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INTRODU~ON 

IN A PFSVIOUS paper [l] a parameter perturbation technique 
was introduced for spherical solidification of a saturated 
liquid with the wall temperature fixed. In that work, only 
the Brst three terms of the solution were presented. The 
amount of algebraic work made it difficult to calculate more 
terms in the solution. The present investigation introduces 
a technique to calculate as many terms as desired in this type 
of perturbation solution. The case of planar solidification of 
a saturated liquid with convection at the wall is considered. 
The properties of the solidified material and the freezing 
temperature are assumed constant. Extensions should be 
possible for other types of boundary conditions and for 
outward and partial inward spherical as well as cylindrical 
solidification. The perturbation parameter used is a qualita- 
tive measure of the sensible heat in the solidified material 
relative to the latent heat of fusion liberated at the freezing 
front. It is shown that exact solutions can be obtained for 
values of this parameter less than or equal to one. 

The technique presented in this paper does not eliminate 
the amount of algebraic work encountered when many 
terms of the perturbation solution are calculated. Instead, 
the difficulties are rearranged in such a manner that a 
digital computer can be used to advantage. No finite 
difference or any other numerical methods are used to 
calculate the coefficients of integer powers of the perturba- 
tion parameter for the temperature distribution. the freezing- 
front speed and its inverted series (i.e. the derivative of the 
time with respect to the freezing-front position). Numerical 
integration must then be used to ohtain the time as a function 
of the freezing-front position. 

* Part of Doctoral Dissertation, Mechanical Engineering 
Department. Columbia University, New York. New York, 
U.S.A. 

ANALYSIS 

For planar solidification of a saturated liquid. the tem- 
perature distribution in the solidified material, T: satisfie\ 
the transient heat conduction equation in time t and space 
x as 

where the thermal diffusivity of the solidified material, Z. 
is introduced and constant properties are assumed. The 
temperature distribution equals the freezing temperature. 
7” at the freezing front, X = X,: 

T(X = ?(,. t) = Tr (2) 

The boundary condition at the wall is given in terms of the 
wall conductance, H,, and the characteristic value of the 
temperature in the flowing coolant, Tc, yielding 

where the thermal conductivity of the solidified material. 
li, is introduced. The last boundary condition to be con- 
sidered is the energy balance at the freezing front. which 
yields in terms of the latent heat of fusion, L. and the density 
of the solidified material. p: 

(41 

At this point, it is convenient to introduce the dimensionless 
quantities: position, x, freezing-front position, xI’ time, i. 
temperature, u. and the physical parameter, E: all quantities 
defined as 
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(5) 

where the specific heat of the solidified material, c, is 
introduced Substitution of equations (5) into equations (I)- 
(4) and a change of variables from x, r to x, xJ yields the 
normalized form of the Sunday-value problem: 

ah au au - 
ax2 "% _,axf 

u(x = XFXZ) = 1, u(x = 0, x,) = e 
ax z=0 

(61 

where the position of the freezing front is calculated from 

d”,=!!!! 
dr ax *‘xl. 

(7) 

A perturbation solution is now assumed for the temperature 
distribution in terms of the parameter E: 

U(X, X,; E) = Ui(X, X#- ’ (8) 

where 

i = 1,2,...,N f 

where the summation convention over repeated indices is 
adopted in equation (8) and in the remainder of this work, 
unless it is otherwise noted. The number of terms desired 
in the solution is indicated as N,. Substituting equation (8) 
into equations (6) and equating coefftcients of equal powers 
of a, one obtains 

ah. =I Ofori = 1 
I 
as2 

{I 
4 & 
2~ x=sI ax,' 

j= 1,2 ,...,i - ifori> 2 

Ui(X = x,, x,) = 
lfori = 1 6 fori22’ 

Ui(X = 0, x ) = 3 
ax x=0 

where 

(91 

i = 1 2 , ,..., N,. 

The solution to the differential equations in (9) can easily 
be obtained, yielding 

ui = Ai j,,x’-’ (10) 

where 

i = 1,2,. . , N, j = l, 2,. . . ,2i 

and the coefficients R, , , are functions of x, alone, which are 

calculated from the boundary conditions and sequence 
relations in equations (9). 

A presentation in the form of a summary follows for the 
solution to all the coefficients 1,. j, i; however, first define 
the terms a,,, as the binomial coefficients: 

ai , = a, i =lfori=23 , ,... no sum on i 
> * 

“i,j=ai-,,j-l +a,_,,jfori=3,4 . . . . j = 2,3,. . . ,i - 1. 

(111 

Also for convenience define the function fi 1 = x$” and 
note that its (m - .l)th derivative is given by 

(i-l)(i-2)...(i-m+l)nj~-” 

I’.“=(Oformbj + -1 

form=23 . . . . . j 

no sum on j or m. 

(12) 

In the manner described schematically, for the fii few 
terms, in Fig l, the following set of equations is used to 

AI,l,,A,,,,rn m = 2.3, __.,fv, 

Equgtion (14) 

I 
+ 

A n.aAA2,,,, 
Equation (15) 

i 

I A 2,3,m. x 2,4,m m -2,5--rt-l 

Equation 1171 I 

FIG. 1. Procedure for calculation of coefftcients, Ac j, i, for 
perturbation solution, equation (lo), for any given value of 

normalized freezing front position, X, 



1818 SHORTER COMMUNICATIONS 

calculate as many coefftcients li, j, 1 as desired (i.e. i = 1.2.. . 
N, andj = 1,2,. . ,2i): 

3 
1 

‘1.1.f = 
E 
-1.2.1 

=_- 
f -t- Xf 

03) 

a 1.t.m = a l,Z.m = (-1) 
~ l(m -.1&n - 2)...(l) 

- _(f + +m (14) 

where 
m = 2,3,. . . , N,, no sum on m 

a t 2 ‘i-j,&2 
1.1+2.! = tk -.l)'j,k, *‘f- I(f) 

where 
i = 2,3, _ ..,N,,i=.l,2 ,..., 2(i- 1) 

j=1,2 ,.... i - ;[d +(;1)‘+1],k=?.3.,. 

no sum on I 

where 

i = 2,3,. . . , N,,j = 3,4 ,.... 2i 

1. 

(15) 

2i 

where 

i = 2,3,. . . , N, - 1, I = l,Z,. . _, 2(i - 1) 

j= I,2 
1 

,...,i -- 
2 

E+ , k = 2,3,. . ,2i 

m = 2.3,. . . , N, - i + .l, n = I, 2,. , m 

h= 1.2 ,..., n,nosumonm 

4.1.m = 4.2.n = -am.m-n+l~n.n-h+ I bc,,,h ,,“++ ,A,. I.m-n+ L 
i..fI 

(18) 

where 

i=2,3 ,..., N,-l.j=3.4 ,.... 2i 

m=2,3 ,_.., N,-ii+-l,n=1,2 . . . . . m 

h = 1.2,. . , n, no sum on m. 

The calculations for li.j,I (for a given value of x!) begin 
with equations (13) and (14), then equations (15)-(18) are 
used repeatedly in the order as shown, for the first few terms. 
in Fig. 1. Equations (tl) and (12) have not been included as 
part of this procedure since their values can First be calcufated 
and stored for future use. 

Equations (7) (8) and (10) combine to yield for the deriva- 
tive of time with respect to the freezing-front position: 

dr ds _ = L&-i, i =.1.2 
dx, dxi 

. ...* N* 

i-fori=l 

do:? - 
dr, - 

- $for i = 2 

1 dy, _- g: 
i 
g, + gj+,F 

> 
fori = 3,4,...N, 

(1% 

c wherej=1,2,...i-2 

& = (i - 1)x$-z& j * . . 

where i = 1.2,. . . N,,j = 2,3 ,..., 2i. 

The number of mathematical operations increases rapidly 
as more terms, N,, are included in the calculation. However, 
these operations can easily be done by a digital computer; 
thereby, obtaining very accurate results. Note that the pro- 
cedure up to this point is exact except for numerical trunca- 
tion errors by the digital computer. No numerical methods 
or any other approximations have been made. The only 
requirement is that the series solution, equation (lo), 
converges or somehow that its summation is possible. 

For a given value of x,, equations (19) can be evaluated 
once the values of the functions ii. ,, t am known. Numerical 
integration of the terms dr,/dx, in equations (19) yields the 
coeffjcients ri in the perturbation series for the freezing- 
time solution. It is convenient now to define the sequence of 
partial sums: 

where 

5; = t,#-t (20) 

i = 1,2 ,.... N,, j = 1.2.. . . . i. 

RESULTS AND DISCUSSION 

Table .l shows the first nine terms, TV, i = ;l, 2,. . . (9, of 
the series for the normalized freezing time, 5. for values of 
the normalized front position up to x, = 5. The numerical 
integration of the terms drJdxs was performed with Simp 
son-s rule with increments in front position AxI = @02. 
Successive-order terms are seen to alternate in sign. For 
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Table 1. First nine terms, TV. i = I,& . . , 9, in the regular-perturbation solution for the freezing time for planar solidificntion 
with convection at the wull and liquid at thefreezing temperature 

i 
X/ *l 2 3 4 5 6 7 8 9 

0.2 0.2200 0.01778 -0GO1564 OGOO3945 -0.0001383 O.00005842 -OCGOO2793OGOOO1462 -0OOWO8213 
0.4 04800 0.06476 -0.008154 0002846 -0.001335 00007332 -0GOD4438 OGOO2869 -00001940 
0.6 0.7800 0,1350 -0.01932 0007488 -0.003804 O+W221.1 -0.001389 00009138 -0GOO6180 
0.8 11120 0.2252 -003398 O-01368 -0.007083 0.004134 -0.002573 0.001661 -0001096 
1 1.500 0.3333 -005139 0.02092 -0.01083 0.006253 -0GO3828 m2422 -0001576 
1.4 2.380 0.5989 -0.09282 003768 -0.01918 0.01082 -0.006461 OwKJO1 -0.002643 
1.8 3.420 @9257 -0-1418 0.05692 402852 001585 -0GO9353 @005750 -0GO4005 
2.2 4.620 1.311 -0.1979 007854 -003893 002145 -0.01259 0.007719 4005770 
2.6 5.980 1.753 -02608 0.1025 -0.05048 002767 -0~1620 0009923 --O-007997 
3.0 7.500 2.250 -0.3305 0.1292 -006323 003456 -0~02021 001237 -0.01031 
4 12.00 3.733 -05347 02068 -0*1006 w5479 -0.03199 OG1956 a.01963 
5 17.50 5.555 -0.7823 0.3008 -01459 007939 --GO4632 002832 -0*03153 

terms of the same sign, the higher the order the lower its 
magnitude. Therefore, the series solution including nine 
terms is convergent for values of the perturbation parameter 
E < 1. For example if x, =.l and E = 0.5, then from Table 
1 and equation (20) it can be calculated that ri = 1.500, 
7: = 1.667, T\ = 1.654 and ?f = 1.656 for i > 4. The 
corresponding solution from Goodman’s [2] heat balance 
integral technique is T = 1.654. As another example, if 
xf = 1 and E = 1, then the freezing-time solutions are as 
follows: 

i 1 2 3 4 

r; 1.500 1.833 1.782 1.811 
- 

-5 6 7 8 9 

1.800 ;1.807 1.803 1.805 1.804 

The solution from Goodman in this case is r = 1.789. 
It is simple to calculate algebraic expressions for the first 

three terms of the perturbation solution considered above. 

Shanks [3] transformations are found to increase consider- 
ably the rate and range of convergence of the perturbation 
solution. The solution after application of the first non- 
linear transformation of Shanks can easily be expressed in 
algebraic form. For further information the reader should 
consult with [4] where in addition a comparison is found 
with the perturbation technique of Lock [S]. 
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