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INTRODUCTION

IN A PREVIOUS paper [1] a parameter perturbation technique
was introduced for spherical solidification of a saturated
liquid with the wall temperature fixed. In that work, only
the first three terms of the solution were presented. The
amount of algebraic work made it difficult to calculate more
terms in the solution. The present investigation introduces
a technique to calculate as many terms as desired in this type
of perturbation solution. The case of planar solidification of
a saturated liquid with convection at the wall is considered.
The properties of the solidified material and the freezing
temperature are assumed constant. Extensions should be
possible for other types of boundary conditions and for
outward and partial inward spherical as well as cylindrical
solidification. The perturbation parameter used is a qualita-
tive measure of the sensible heat in the solidified material
relative to the latent heat of fusion liberated at the freezing
front. It is shown that exact solutions can be obtained for
values of this parameter less than or equal to one.

The technique presented in this paper does not eliminate
the amount of algebraic work encountered when many
terms of the perturbation solution are calculated. Instead,
the difficulties are rearranged in such a manner that a
digital computer can be used to advantage. No finite
difference or any other numerical methods are used to
calculate the coefficients of integer powers of the perturba-
tion parameter for the temperature distribution, the freezing-
front speed and its inverted series (i.e. the derivative of the
time with respect to the freezing-front position). Numerical
integration must then be used to obtain the time as a function
of the freezing-front position.

* Part of Doctoral Dissertétion, Mechanical Engineeriné
Department, Columbia University, New York. New York,
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ANALYSIS

For planar solidification of a saturated liquid. the tem-
perature distribution in the solidified material, 7. satisfies
the transient heat conduction equation in time ¢ and space
X as

&*T T

& = {h
&xX* &

where the thermal diffusivity of the solidified material, =
is introduced and constant properties are assumed. The
temperature distribution equals the freezing temperature,
T, at the freezing front, X = X P

TX =X,.0=T, 2)

The boundary condition at the wall is given in terms of the
wall conductance, H, and the characteristic value of the
temperature in the flowing coolant, T, yielding

oT

HITX =00~ T} =k 3
AT =00 = T = kol o)

where the thermal conductivity of the solidified material,
k, is introduced. The last boundary condition to be con-
sidered is the energy balance at the freezing front. which
yields in terms of the latent heat of fusion, L. and the density
of the solidified material, p:

pl—4 =k ' . {4

At this point, it is convenient to introduce the dimensionless
quantities: position, x, freezing-front position, x o~ time, .
temperature, v, and the physical parameter, &: all quantities
defined as
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where the specific heat of the solidified material, ¢, is
introduced. Substitution of equations (5) into equations (1)}~
{4 and a change of variables from x,7 to x,x, yields the
normalized form of the boundary-value problem:

u  Ou ou

8 = “

ox? x|, 0x,
!.

)

du
u(x :O,xf}——-w

ux =xp.x;) =1, P

x=0
where the position of the freezing front is calculated from

dxf_éu_

& ax ’ M

x=xg

A perturbation solution is now assumed for the temperature
distribution in terms of the parameter &:

ul(x, x,;8) = ufx,x e (8)
where
i=12...,N,

where the summation convention over repeated indices is
adopted in equation (8) and in the remainder of this work,
unless it is otherwise noted. The number of terms desired
in the solution is indicated as N, Substituting equation (8)
into equations (6) and equating coefficients of equal powers
of & one obtains

. = Ofori =1
__¢ du. ou. .
o % M o2 i-tforiz2
Oxj __ Ox
x=xy 7
1fori=1 u,
AX =X, = 3 u =0’ =
wlx = xpx;) {Ofori >2 =0 =5 =0
®
where

i=482..,N

-
The solution to the differential equations in (9) can easily
be obtained, yielding

u =42 b xi"!

i i1

(10}
where

i=12..,N, j=1,2..,2

and the coefficients A, , , are functions of x, alone, which are

1817

calculated from the boundary conditions and sequence
relations in equations (9).

A presentation in the form of a summary follows for the
solution to all the coefficients A s however, first define
the terms g, ; as the binomial coefficients:

a,,=a,,=lfori=23,. . nosumoni

ai_j=a,.q’f_1+a,._1,ifori=3,4..., Jj=23,..i—-1
{1

Also for convenience define the function f; , = x/™! and

note that its im — 1)th derivative is given by

1 ={(i-1)(;-2)...(j—m+4)xf;m form=23....,

Oform=>j + 1 no sumon jor m.
12

In the manner described schematically, for the first few
terms, in Fig .1, the following set of equations is used to

AT My

Equation {13}

Y

ya,m M=2,3, N,
Equation {{4)

'

)\2-3.I,)‘2.4,|
Equation (I15)

¥

Az, =Re,2,0
Equation(16)

Y

AaamAza,m 2,3 Nl
E quation {17}

y

2,0,mX2,2,m  M=2.3 N
Equation {18}

Y

A A A A

3,3,4, 3,49, 10, 3,5,0, 7 3,6,1
Equation (I5)

Y

A= Asa

Equation {16)

Y

FiG. 1. Procedure for calculation of coefficients, A o for
perturbation solution, equation (10), for any given value of
normalized freezing front position, x

L

by

1S
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calculate as many coefficients 4, ; ; asdesired (ie.i= 1.2.....
N,andj=:12..., 2i):
1
R e (13)

Jm = Nm-—2)...(1)

A =4 = (=17 14
1,1,m L, 2m ( ) {1+xj)m ( )
where
m=23,....N, nosumonm
yl =k — DA, x5 2hiine (15)
10+2,1 (L T
where
i=23... . N,i=012..2-1
1 14+ (=1
j=1,2,... i - oo — L k=232
j=1 i 2[l+ 3 k i
no sumon{
X l
A1 =X =7 J+ X, (16)
where
i=23....N,j=34,..
i . A f '{x ~him—nt+2 (17)
i+ 2,m —am,m—'n+1an,n~h+1 kA kb2 [(I-{— 1)
where
i=23 . N —-LI=12..,2(~1)
1 1+ (=D
j=12,...,i—~{l+— L k=232
J i 2[ + 2 # i
m=23.. . N ~-i+lLn=12...m
h=12...,n,nosumonm
Aitm = Aiam = ~Ommnt 1an.n—h+1'2~i,j.af}.n—h+ A5 Lmentt
(18)
where
x‘=2,3,...,N‘~;l,j=3.4,._.‘2i
m=23_. N —i+Ln=L2....m

h=1,2,...,nn0sumonm
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The calculations for 4, ; , (for a given value of x) begin
with equations (13) and (14) then equations (15}«18) are
used repeatedly in the order as shown, for the first few terms.
in Fig. 1. Equations {11} and {12} have not been included as
part of this procedure since their values can first be calculated
and stored for future use.

Equations (7), (8) and (10) combine to yield for the deriva-
tive of time with respect to the freezing-front position:

dr dz

E;—:(-ix—isi“l. i=12..., N,
T 5
1
—fori=1
oy
g, .
) — =fori=2
dn, |7 g (19)
& i dr,
wg—i(g + G544 ™ )fori-34
wherej =1,2,...i—2
4; _U_l)xJ ZAIJI

where i =,1,2,.‘.Nx,g =23...,2

The number of mathematical operations increases rapidly
as more terms, N, are included in the calculation. However,
these operations can easily be done by a digital computer;
thereby, obtaining very accurate results. Note that the pro-
cedure up to this point is exact except for numerical trunca-
tion errors by the digital computer. No numerical methods
or any other approximations have been made. The only
requirement is that the series solution, equation (10),
converges or somehow that its summation is possible.

For a given value of x » equations (19) can be evaluated
once the values of the functions 4, , ; are known. Numerical
integration of the terms dt /dx in equations £19) yields the
coefficients 7, in the perturbatmn series for the freezing-
time so]ution. 1t is convenient now to define the sequence of
partial sums:

=1t (20
where
i=1.2....N, =12 i
RESULTS AND DISCUSSION
Table -1 shows the first nine terms. 7,,i =:1,2,...,9 of

the series for the normalized freezing time, T, for values of
the normalized front position up to x, = 5. The numerical
integration of the terms dszx was performed with Simp-
son’s rule with increments in front position Ax! = (-02.
Successive-order terms are seen to alternate in sign. For
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Table 1. First nine terms, t(x;). 1 = 1,2,...,9, in the reqular-perturbation solution for the freezing time for planar solidification
with convection at the wall and liquid at the freezing temperature

i
;&4 2 3 4 5

6 7 8 9

02 02200 001778 —0-001564

04 04800 006476 —0-008154 (0-002846 —0-001335
06 07800 0:1350 —0-01932 0007488 —0-003804
08 1.120 02252 —003398 0-01368 —0-007083
1 1-500 03333 —005139 002092 —0-01083

14 2380 05989 —009282 003768 —0-01918

1-8 3420 09257 —0-1418 005692 —0-02852
22 4620 1311  —01979 0-07854 —0-03893

26 5980 1753 —0-2608 0-1025 —0-05048

30 7500 2250 —0-3305 0-1292 —0-06323

4 1200 3733 —0:5347 0-2068 —0-1006

5 1750 5555 —0-7823 0-3008 —0-1459

00003945 —0-0001383 000005842 —0-00002793 0-00001462 —0-000008213

00007332 —0-0004438 00002869  —0-0001940
0002211  —0-001389 00009138 —0-0006180
0004134  —0002573 0001661 —0-001096
0-006253  —0-003828 (-002422 —0-001576
001082 —0-006461  0-004001 —0-002643
0-01585 —0-009353  0-005750 —0-004005
0-02145 —0-01259  0-007719 —0-005770
002767 —001620  (0-009923 —0-007997
0-03456 —0:02021 001237 —0-01071
0-05479 —003199 001956 —0-01963
007939 —004632 002832 —0-03153

terms of the same sign, the higher the order the lower its
magnitude. Therefore, the series solution including nine
terms is convergent for values of the perturbation parameter
¢ < 1. For example if x y =.1 and ¢ = 05, then from Table
1 and equation (20) it can be calculated that 7} = 1-500,
t, = 11667, 7y = 1654 and 1; = 1656 for i > 4. The
corresponding solution from Goodman’s [2] heat balance
integral technique is t = 1-654. As another example, if
X, = 1 and ¢ = 1, then the freezing-time solutions are as
follows:

i1 2 3 4
#1500 1833 1782 1811
s 6 7 8 9

1-800 1-807 1803 1805 1804

The solution from Goodman in this case is = 1-789.
It is simple to calculate algebraic expressions for the first
three terms of the perturbation solution considered above.

Shanks [3] transformations are found to increase consider-
ably the rate and range of convergence of the perturbation
solution. The solution after application of the first non-
linear transformation of Shanks can easily be expressed in
algebraic form. For further information the reader should
consult with [4] where in addition a comparison is found
with the perturbation technique of Lock [5].
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